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Abstract Computational prediction of protein subcellular locations in eukaryotes facilitates experimental design and proteome 

analysis. We provide a short review on recent development of computational tools and our experience in evaluating some of these 

tools. Classical secretomes can be relatively accurately predicted using computational tools to predict existence of a secretory signal 

peptide and to remove transmembrane proteins and endoplasmic reticulum (ER) proteins. The protocols of differentially combining 

SignalP, Phobius, WoLFPSORT, and TargetP for identifying a secretory signal peptide in different kingdom of eukaryotes, with 

TMHMM for removing transmembrane proteins and PS-Scan for removing ER proteins significantly improve the secretome 

prediction accuracies. Our evaluation showed that current computational tools for predicting other subcellular locations, including 

mitochondrial or chloroplast localization, still need to be improved. 
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Introduction 
Eukaryotic cells have a complex endomembrane 
system, in addition to independent organelle structures 
such as mitochondria and chloroplasts. These 
subcellular structures include nucleus, endoplasmic 
reticulum (ER), Golgi apparatus, lysosome, peroxi- 
some, vacuole, cytoskeleton, cytosol, mitochondrion, 
chloroplast, and plasma membrane. For a subcellular 
membrane enclosed structure, these structures consist 
of membrane and internal space such as ER lumen. 
Outside the plasma membrane, the cell wall and 
extracellular matrix and space are also important sites 
for cellular activities.  

Eukaryotic cells synthesize thousands of different 
proteins. For example, Saccharomyces cerevisiae, 
commonly known as baker’s yeast, with a relative 
small genome size of 12 Mb, encodes approximately 
5000~6000 different proteins. The proteins encoded 
by a nuclear genome are synthesized on ribosomes in  
 
 
 
 
 

cytosol or ribosomes attached to rough ER.  However, 
these proteins need to be translocated to one or more 
than one specific subcellular location(s) in order to 
play their biological roles, a process called protein 
targeting or sorting. Experimental approaches for 
identifying protein subcellular locations are widely 
exploited including isolation of organelles, green 
fluorescence tagging proteins, etc (Heazlewood et al., 
2005). Some signal targeting peptides determining 
protein subcellular locations have been identified 
experimentally (Blobel and Dobberstein, 1975). Thus 
protein targeting is believed to be determined by the 
protein’s physical and chemical properties of 
targeting domains that could be identified from its 
amino acid sequence. A number of computational 
tools have been recently developed to predict the 
subcellular locations of eukaryotic proteins. Nakai 
and Horton (2007) comprehensively reviewed 
computation methods and tools for subcellular location 
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prediction. We provide a short review about more 
recent progress in this area and discuss the challenges 
remaining for future development based on our 
research experiences.  

Secretory Signal Peptide and Secretome 
Prediction 
The term secretome is used to refer to a whole set of 
proteins that are secreted outside a cell-including cell 
wall, extracellular matrix and extracellular space-in an 
organism. Recently many efforts have been made to 
identify secretomes as these proteins have both 
potential applications in environmental industry and 
biomedicine (Lum and Min, 2011; Makridakis and 
Vlahou, 2010). For example, fungal secretomes often 
contain secreted extracellular enzymes to break down 
biopolymers that have potential applications in biofuel 
production (Lum and Min, 2011), and the human 
secretome plays important biological roles, such as 
insulin, and provides useful information for the 
discovery of novel biomarkers such as for cancer 
diagnosis (Makridakis and Vlahou, 2010). 

A secretome consists of two types of proteins: 
classical secreted proteins and nonclassical secreted 
proteins. A typical classical secreted protein contains a 
secretory signal peptide located on its N-terminus and 
does not contain other targeting signals in its sequence 
(Emanuelsson et al., 2007). The secretory signal 
peptide directs the ribosome to the rough ER to 
complete the synthesis of a signal peptide containing 
protein.  The secretory signal peptide, typically 
15~30 amino acids long, is cleaved off during 
translocation across the membrane (von Heijne, 1990). 
One basic concept that should be made clear is that 
not all secretory signal peptide containing proteins are 
secreted. A number of papers reported predicted 
secretomes solely based on existence of secretory 
signal peptide prediction, resulting in an 
overestimation of the number of secreted proteins in a 
proteome.  Secreted proteins make up only a fraction 
of the proteins that enter the ER secretory pathway, as 
proteins that contain a signal peptide and enter the ER 
also include residents of the rough ER, smooth ER, 
Golgi complex, lysosomes, endosomes, and plasma 
membrane. 

Nowadays the commonly used tools for secretory 
signal peptide prediction include SignalP 3.0 
(Bendtsen et al., 2004b), SignalP 4.0 (Petersen et al., 
2011), Phobius (Käll et al., 2004 and 2007), TargetP 
(Emanuelsson et al., 2000), and PrediSi (http://www. 
predisi.de/) (Hiller et al., 2004).  In addition, 
WoLFPSORT and MultiLoc2 can also be used for 
secreted protein prediction (Horton et al., 2007; Blum 
et al., 2009).  The accuracy of SignalP 4.0 was 
improved over SignalP 3.0 with a higher specificity by 
intergrading transmembrane prediction (Petersen et al., 
2011).  However, SignalP 3.0 is more accurate than 
SignalP 4.0 in prediction of the cleavage site of the 
signal peptide.  The default length of N-terminal 
peptide is 70 residues in both SignalP 3.0/4.0 and 
PrediSi and thus proteins sequences having a long 
signal peptide (>70 amino acids) cannot be predicted 
when using the default truncation parameter. Phobius 
was also a relatively accurate signal peptide predictor 
that combined transmembrane topology and signal 
peptide prediction. 

Overall the accuracy for signal peptide prediction of 
the tools mentioned above was acceptable for general 
use.  However, our recent evaluation of these tools 
showed that the accuracy for classical secretome 
prediction could be significantly improved by 
combining multiple tools, mainly due to an increase in 
prediction specificity (Min, 2010). In addition, adding 
TMHMM for removing transmembrane proteins and 
PS-Scan (a standalone version downloaded from 
Scan-Prosite) for removing ER resident proteins 
(Prosite: PS00014, Endoplasmic reticulum targeting 
sequence) significantly improved the accuracy for 
secretome prediction (Min, 2010). Our evaluation also 
showed different tools have different strength in 
processing protein data generated from different 
kingdoms of eukayotic organisms. We proposed the 
following protocols for secretome prediction in 
different kingdoms of eukaryote: 
SignalP/WoLFPSORT/Phobius in fungi, Phobius/ 
WoLFPSORT/TargetP in animals, SignalP/Phobius/ 
TargetP in plants, and SignalP/Phobius/TargetP/ 
WoLFPSORT in protists. The specificity for signal 
peptide prediction is significantly increased when two 
or more tools are used. In addition, TMHMM and 
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PS-Scan should be used for all eukaryotic secretome 
predictions (Min, 2010).  

There is only one tool, SecretomeP, available for 
nonclassical secretome prediction (http://www.cbs.dtu. 
dk/services/SecretomeP/) (Bendtsen et al., 2004a) of 
mammalian and bacterial organisms. As about 50% of 
secreted proteins in plants were estimated to be 
non-classical, i.e. leaderless secreted proteins (LSPs) 
(Agrawal et al., 2010), certainly a plant specific 
trained tool or method is needed for prediction of 
plant specific non-classical secretomes. 

Predictors for Multiple Subcellular Locations 
TargetP was implemented to predict subcellular 
locations of eukaryotic proteins by discriminating 
between chloroplast transit peptide (cTP, in plants), 
mitochondrial targeting peptide (mTP) and secretory 
pathway signal peptide (Emanuelsson et al., 2007). 
Except for fungal protein data sets, combining TargetP 
with SignalP, TMHMM and PS-Scan increased 
secretome prediction accuracy in other eukaryotic 
protein data sets (Min, 2010).  Other widely used 
tools for predicting multiple subcellular locations are 
WoLFPSORT and MultiLoc2. WoLFPSORT predicts 
12 subcellular locations including chloroplast, cytosol, 
cytoskeleton, ER, extracellular, Golgi apparatus, 
lysosome, mitochondria, nuclear, peroxisome, plasma 
membrane, and vacuolar membrane (Horton et al., 
2007). MultiLoc2 predicts 9 subcellular locations for 
animals and fungi and 10 subcellular locations for 
plants (Blum et al., 2009). Chou and Shen (2008) 
developed a package of web servers, called Cell-PLoc, 
which includes 6 different servers for predicting up to 
22 subcellular locations of proteins in various 
organisms including viruses, bacteria, plants, humans, 
or general eukaryotes (http://www.csbio.sjtu.edu.cn/ 
bioinf/Cell-PLoc-2/). However, the servers in the 
Cell-PLoc package can only process a single sequence 
per submission, and no stand-alone tools are available, 
which prevented us for further evaluating the 
accuracies of these tools.   

While developing the plant secretome knowledge-base 
(PlantSecKB), which is now publicly available 
(http://proteomics.ysu.edu/secretomes/plant.php), we 

compared the prediction accuracies of TargetP, 
WoLFPSORT, and MultiLoc2 using a set of plant 
proteins retrieved from the UniProtKB Swiss-Prot 
data set. Proteins having multiple subcellular locations 
or labeled as “fragment”, or having a term of “by 
similarity” or “probable”  or “predicted”  in 
subcellular location annotation were removed.  A 
total of 6908 proteins having annotated subcellular 
locations were selected.  The results are shown in 
Table 1. If we ignore the subcellular location 
predictions with less than 100 positive entries, our 
evaluation showed prediction of secreted proteins was 
relatively more accurate than prediction of other 
subcellular locations by all three tools. TargetP was 
significantly more accurate than the other two tools in 
predicting secreted proteins. The Mathews' correlation 
coefficient (MCC) (Matthews, 1975) values for 
prediction of all other subcellular locations by all three 
tools were lower than 50%. Thus, an improvement in 
prediction accuracies for these subcellular locations of 
plant proteins is really needed. Overall prediction 
accuracies between WoLFPSORT and MultiLoc2 
using its sequence-based prediction method did not 
show significant differences. MultiLoc2 incorporated 
phylogenetic profiles and Gene Ontology terms and 
was reported to perform considerably better than other 
methods for animal and plant proteins (Blum et al., 
2009). However, its accuracy cannot be fairly tested as 
our data all had Gene Ontology annotation. In addition, 
we also found that MultiLoc2 was about 500 times 
slower in data processing than WoLFPSORT, which 
prevented us from using MultiLoc2 in data processing 
for our database development. 

Other Computational Tools 
Table 2 lists a collection of subcellular localization 
prediction tools and their related publications. The 
weblinks for all these tools can be found at our 
webserver (http://proteomics.ysu.edu/tools/subcell.html).  
This is not an exhaustive list, but focuses on the tools 
discussed in this paper as well as more recent tools 
published since 2008. Our knowledgebases currently 
collect predictions from SignalP 3.0, SignalP 4.0, 
TMHMM, Phobius, TargetP, WoLFPSORT, PS-Scan 
and FragAnchor as discussed above. 
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Table 2 A collection of published protein subcellular localization prediction tools 

Tool name Locations or protein features predicted Organism categories Publication citation 

TargetP Extracellular, mitochondrial, chloroplast Non-plant, plant Emanuelsson et al., 2000 

TMHMM Transmembrane helices Any Krogh et al., 2001 

ScanProsite 
(PS-Scan) 

ER retention signal Any de Castro et al., 2006 

SecretomeP 2.0 Non-classical i.e. not signal peptide 
triggered protein secretion 

Gram-positive bacteria, gram-negative 
bacteria, mammal 

Bendtsen et al., 2004a 

Phobius Signal peptide and transmembrane 
topology 

Any Käll et al., 2007 

WoLF PSORT > 5 locations Fungi, plant, animal Horton et al., 2007 

PRED-LIPO Lipoprotein signal peptides Gram-positive bacteria Bagos et al., 2008 

ProLoc-GO > 5 locations Human and eukaryotes Huang et al., 2008 

KnowPredsite > 5 locations Prokaryotes and eukaryotes Lin et al., 2009 

MultiLoc2 > 5 locations Animal, fungal, plant Blum et al., 2009 

PRED-SIGNAL Signal peptides Archaea Bagos et al., 2009 

RSLPred Chloroplast, cytoplasm, mitochondria, 
nucleus 

Oryza sativa only Kaundal  and Raghava, 2009

SherLoc2 > 5 locations Animal, fungi, plant Briesemeister et al., 2009 

Cell-PLoc 2.0 > 5 locations Eukaryote, human, plant, virus, 
gram-positive bacteria, gram-negative 
bacteria 

Chou and Shen, 2010 

CoBaltDB > 5 locations Prokaryotes Goudenège  et al., 2010 
PSORTb > 5 locations Gram-positive and gram-negative 

bacteria 
Yu et al., 2010 

SCLPred Cytoplasm, mitochondrion, nucleus, 
secretory, chloroplast 

Animals, plants, fungi Mooney et al., 2011 

SignalP 4.0 Signal peptide Eukaryotic, gram-positive bacteria, 
gram-negative bacteria 

Petersen et al., 2011 

SlocX > 5 locations Aribdopsis thaliana only Ryngajllo et al., 2011 

 

Some tools make predictions for only a single 
subcellular location or identify the presence of a single 
protein feature (such as a signal peptide). Then there 
are more comprehensive tools that can make 
predictions for many locations, and may employ a 
combination of multiple computational methods as 
well. The trend in recent years seems to be toward 
more comprehensive tools. Of the tools we collected 
that were published since 2008, twelve out of fifteen 
contain predictions for four or more subcellular 
localizations.  

With the emergence of so many tools that can already 

predict a variety of subcellular locations, one might 
ask if our approach of combining analysis results from 

multiple tools into a database is still relevant. We 
believe our work can make several valuable 
contributions in this area. Firstly, a combination of 
data from multiple predictions often produces more 
accurate results than the individual predictions.  This 
principle has been demonstrated in our specific work 
with secretomes (Min, 2010) and is also a widely 
recognized statistical concept. Also, a database can be 
used in ways that a prediction tool cannot. For most of 
the prediction tools, analysis is performed at the time 
of request. The user must know which protein(s) they 
are interested in before they can get analysis results.  
With our database, the user can work in the other 
direction as well. They can start with a subcellular 
location and species they are interested in and get a 
list of proteins that meet those criteria. 
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In addition, the development of so many tools that can 
perform the same task creates a dilemma for 
researchers, who must choose which tool(s) they will 
use. There is a need for testing that compares different 
tools and identifies their relative strengths and 
weaknesses.  Perhaps some tools perform better for 
plants while others perform better for bacteria. Some 
tools may have better specificity for a certain 
subcellular location while others may have better 
sensitivity. Our knowledgebases can serve as a rich 
dataset for performing such comparisons. In this work, 
we compare the prediction accuracies for plant 
proteins using TargetP, WoLFPSORT and MultiLoc2.  
Much more work is needed to continue these types of 
comparative studies for improving the prediction 
accuracy of proteome-wide protein subcellular 
location in the future. 
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Table 1 Comparison of prediction accuracies of plant protein subcelluar locations by different tools 

 Total Total  TargetP WoLF PSORT MultiLoc2 

 positives negatives Sn (%) Sp (%) MCC (%) Sn (%) Sp (%) MCC (%) Sn (%) Sp (%) MCC (%) 

Secreted 263 6645 76.8 98.7 72.3 43.7 99.6 58.0 51.3 98.6 53.7 

Mitochondrial 402 6506 61.4 77.5 21.1 33.3 96.2 30.4 60.9 84.2 27.3 

Chloroplast 4918 1990 28.2 90.7 20.4 28.2 83.9 12.7 19.2 98.6 23.2 

ER 87 6821 - - - 9.2 99.9 24.5 29.9 98.4 23.0 

Cytosol 23 6885 - - - 52.2 65.6 2.2 95.7 51.5 5.4 

Golgi Apparatus 54 6854 - - - 0.0 99.9 -0.2 24.1 98.5 15.5 

Peroxisome 52 6856 - - - 15.4 99.3 14.3 42.3 98.1 23.9 

Nucleus 788 6120 - - - 80.3 78.1 41.1 26.8 93.3 22.4 

Plasma Membrane 14 6894 - - - 21.4 97.9 6.1 7.1 99.4 3.9 

Vacuole 121 6787 - - - 14.0 99.5 21.2 5.0 99.8 11.6 

Note: Sn: Sensitivity; Sp: Specificity; MCC: Mathews' correlation coefficient 


